FPN #588P

PLCRC-PROVENC3 study: Prognostic value of post-surgery liquid biopsy circulating tumor DNA in stage III colon cancer patients

Carmen Rubio-Alarcón¹, Andrew Georgiadis², Ingrid A. Franken³, Haoyue Wang⁴, Sietske C.M.W. van der Kruijssen³, Karlijn van Rooijen³, Theodora C. Linders⁵, Pien Delis-van Diemen¹, Maartje Alkemade⁶, Anne Bolijn¹, Marianne Tijssen¹, Margriet Lemmens¹, Lana Meiqari¹, Steven L.C. Ketelaars¹, Miranda M.W. van Dongen¹, Mirthe Lanfermeijer⁵, Birgit I. Lissenberg-Witte4, Linda J.W. Bosch¹, Teunise Bisschop-Snetselaar², Bregje Adriaans², Amy Greer², David Riley², James R. White², Catherine Leech², Samuel V. Angiuoli², Niels F.M. Kok⁷, Cornelis J.A. Punt⁸, Daan van den Broek⁵, Miriam Koopman³, Gerrit A. Meijer¹, Victor E. Velculescu⁹, Jeanine M. L. Roodhart³, Veerle M.H. Coupé⁴, Mark Sausen², Geraldine R. Vink^{3,10}, Remond J.A. Fijneman^{1*} on behalf of the PLCRC-MEDOCC group

¹ The Netherlands Cancer Institute, Dept of Pathology, Amsterdam, The Netherlands. ² Personal Genome Diagnostics (Labcorp), Baltimore, MD, USA. ³Department of Medical Oncology, University Medical Centres, Location VU Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ⁴ Amsterdam University Medical Centres, Location VU Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ⁴ Amsterdam University Medical Centres, Location VU Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. ⁴ Amsterdam University Medical Centres, Location VU Medical Centres, Location VU Medical Center Utrecht, Utr Center, Department of Epidemiology and Data Science, Amsterdam, The Netherlands. ⁵The Netherlands. ⁶Core Facility Molecular Pathology and Biobanking (CFMPB), The Netherlands Cancer Institute, Amsterdam, The Netherlands. ⁷Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. ⁸Department of Epidemiology, Julius Center, University School of Medicine, Baltimore, MD, USA. ¹⁰Department of Research and Development, Netherlands. Comprehensive Cancer Organisation, Utrecht, The Netherlands

Background

- \succ Current clinical guidelines in the Netherlands recommend adjuvant chemotherapy treatment (ACT) following resection of the primary tumor for all stage III colon cancer patients.
- > Only 15-20% of the patients benefit from ACT: around 55% of stage III colon cancer patients are cured by surgery alone and are being overtreated, and 30% will relapse despite ACT.
- > Prognostic biomarkers may improve ACT decisions and reduce futile treatment by identifying the patients at a higher risk of recurrence that could benefit from ACT.

> Post-surgery circulating tumor DNA (ctDNA) detection indicates presence of minimal residual disease.

Goal of the study

Investigate the prognostic value of post-surgery ctDNA detection for disease recurrence in ACT treated stage III colon cancer patients

Experimental approach: ctDNA detection method

Tumor-informed detection of plasma ctDNA through integrated whole genome sequencing (WGS) analyses:

A) Schematic of the Labcorp Plasma Detect[™] assay workflow (adapted from Keefer et al., 2022 Nature Communications and Wood et al., 2018 Science Translational Medicine B) Analytical studies demonstrated a limit of detection (95%) of 0.005% tumor content utilizing contrived reference models derived from commercially available cell lines (including lung cancer, breast cancer, and melanoma), with a specificity of 99.6% (2,015/2,023) observed across 119 noncancerous donor plasma specimens evaluated against 17 reference somatic mutation datasets. The observed tumor fraction was also highly correlated with the reference tumor fraction (Pearson correlation coefficient = 0.96, p<0.001) • C) Analysis of an external contrived reference control sample demonstrated reproducible results across 24 independent runs evaluated for the PROVENC3 clinical study (CV = 7.2%)

Post-surgery ctDNA

Experimental approach: PROVENC3 study

PROVENC3: (**PRO**gnostic **V**alue of **E**arly Notification by **C**tdna in Colon Cancer stage 3).

> PROVENC3 is an **observational** study within the Prospective Dutch Colorectal Cancer Cohort (PLCRC, https://plcrc.nl/for-international-visitors). ➢ 26 Participating hospitals in PROVENC3.

>210 patients included (Dec2016-Oct2021): Stage III, ACT treated, post-surgery

> One post-surgery blood sample is collected from day 3-65 after surgery (Median: 10) days, IQR: 14 days), before ACT.

 \geq All biosamples are sent to a central laboratory (The Netherlands Cancer Institute). > Clinical data is collected in the Netherlands Cancer Registry by IKNL.

Baseline clinicopathological characteristics

Results for **210 patients** with post-surgery ctDNA analyzed and clinical follow up (FU) information available. Median FU: 40 months, IQR: 29-48 months.

		ctDNA positive	ctDNA negative	Total	p.value 0.05 sig. lev.
	Γ	28	182	210	
Median age (years)		68 (43-83)	63 (32-79)	63 (32-83)	0.08
Sex	Female	9 (32%)	88 (48%)	97 (46%)	0.15
	Male	19 (68%)	94 (52%)	112 (54%)	
Clinicopathological risk	Low risk (T1-3, N1)	17 (61%)	110 (60%)	127 (60%)	1
	High risk (T4 and/or N2)	11 (39%)	72 (40%)	83 (40%)	
T status	T1	0 (0%)	4 (2%)	4 (2%)	0.81
	T2	3 (11%)	26 (14%)	29 (14%)	
	Т3	18 (64%)	107 (59%)	125 (60%)	
	T4	7 (25%)	45 (24%)	52 (24%)	
N status	N1	19 (68%)	136 (75%)	155 (74%)	0.49
	N2	9 (32%)	46 (25%)	55 (26%)	
MSI status	Stable (MSS)	26 (93%)	154 (85%)	180 (86%)	0.38
	Instable (MSI)	2 (7%)	28 (15%)	30 (14%)	
Differentiation grade	Well differentiated	0 (0%)	0 (0%)	0 (0%)	0.77
	Moderately differentiated	22 (79%)	150 (82%)	172 (83%)	
	Poorly differentiated	4 (14%)	25 (14%)	29 (13%)	
	Undifferentiated	0 (0%)	0 (0%)	0 (0%)	
	UNK	2 (7%)	7 (4%)	9 (4%)	
Tumor location	Left	13 (46%)	106 (58%)	119 (57%)	0.31
	Right	15 (54%)	76 (42%)	91 (43%)	
L					
RAS	WT	13 (46%)	113 (62%)	126 (60%)	0.15
	mut	15 (54%)	69 (38%)	84 (40%)	
L					
BRAF	WT	21 (75%)	147 (81%)	168 (80%)	0.46
	mut	7 (25%)	35 (19%)	42 (20%)	

Post-surgery ctDNA status was independent of all clinicopathological risk characteristics evaluated.

Post-surgery ctDNA detection has a strong prognostic value

Time to recurrence is shorter for ctDNA positive patients

Shorter recurrence may opportunity for earlier and potentially more effective intervention than is possible when manifests clinically.

Conclusions

- radiological recurrence identification.

Next steps

Post-surgery ctDNA testing improves the stratification of stage III colon cancer patients for disease recurrence on top of current clinicopathological risk factors. There is a substantial but limited time window between ctDNA detection and

Based on the results of this study, a health technology assessment will be conducted, and we will design an interventional study towards implementation of ctDNA testing for stage III colon cancer patients.

COI C. R-A. declares non financial support from PGDx and Cergentis B.V.

Contact: c.rubio@nki.nl